Unveiling the Antidiabetic and Anti-Inflammatory Potential of Piliostigma thonningii Ethanol Leaf Extract as a Dual PPAR-γ and COX-2 Modulator via In Vitro and Molecular Docking Insights

Authors

  • Mutiu A. Alabi Biochemistry Department, Faculty of Pure and Applied Sciences, Kwara State University, Malete 241103, Nigeria Author
  • Nabilat T Yakub Biochemistry Department, Faculty of Pure and Applied Sciences, Kwara State University, Malete 241103, Nigeria Author
  • Miracle M Abiola Biochemistry Department, Faculty of Pure and Applied Sciences, Kwara State University, Malete 241103, Nigeria Author
  • Emmanuel O Ajani Biochemistry Department, Faculty of Pure and Applied Sciences, Kwara State University, Malete 241103, Nigeria Author

DOI:

https://doi.org/10.26538/tjdr/v2i5.2

Keywords:

Piliostigma thonningii, Diabetes, Inflammation, PPAR-γ, Molecular docking, COX-2

Abstract

Purpose: Diabetes mellitus remains a global health challenge, prompting the search for safer, more effective therapies. Piliostigma thonningii, a medicinal plant used in traditional medicine, is known for its antidiabetic and anti-inflammatory properties. This study evaluates the ethanol leaf extract of P. thonningii for these activities

Methods: Ethanol leaf extract was analyzed via GC-MS and subjected to in vitro assays. Identified phytochemicals were further assessed using molecular docking.

Results: The extract demonstrated a dose-dependent inhibition of α-amylase and α-glucosidase activities, with IC₅₀ values of 68.50 ± 1.84 and 483.70 ± 2.69 µg/ml, respectively, suggesting its potential to regulate postprandial hyperglycemia. Additionally, the extract enhanced glucose uptake and adsorption, reinforcing its hypoglycemic activity. The anti-inflammatory assays revealed significant inhibition of protein denaturation (IC₅₀ = 61.50 ± 1.79 µg/ml), proteinase activity (IC₅₀ = 63.30 ± 1.80 µg/ml), membrane stabilization (IC₅₀ = 58.37 ± 1.77 µg/ml), and heat-induced hemolysis (IC₅₀ = 83.97 ± 1.92 µg/ml), indicating its potential as an anti-inflammatory agent. Molecular docking analyses further validated the pharmacological potential of P. thonningii, revealing strong binding affinities of its phytochemicals to peroxisome proliferator-activated receptor gamma (PPAR-γ) and cyclooxygenase-2 (COX-2). Notably, anthracene, 1,2,3,4-tetrahydro-9,10-dimethyl- exhibited the highest binding affinity for PPAR-γ (-7.24 kcal/mol), surpassing pioglitazone (-5.64 kcal/mol), while tetratriacontyl trifluoroacetate showed a strong interaction with COX-2 (-6.40 kcal/mol), comparable to celecoxib (-7.13 kcal/mol).

Conclusion: P. thonningii exhibits dual antidiabetic and anti-inflammatory potential, supporting its traditional use. Further in vivo and clinical studies are warranted to confirm its therapeutic value.

Downloads

Download data is not yet available.

References

1. Ong KL, Stafford LK, McLaughlin SA, Boyko EJ, Vollset SE, Smith AE. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023;402(10397):203-234. Doi: 10.1016/S0140-6736(23)01301-6

2. Hossain MJ, Al-Mamun M, Islam MR. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Sci Rep. 2024;7(3):e2004. Doi: 10.1002/hsr2.2004

3. Antar SA, Ashour NA, Sharaky M, Khattab M, Ashour NA, Zaid RT. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed Pharmacother. 2023;168:115734. Doi: 10.1016/j.biopha.2023.115734

4. Banday MZ, Sameer AS, Nissar S. Pathophysiology of diabetes: An overview. Avicenna J Med. 2020;10(4):174-188. Doi: 10.4103/ajm.ajm_53_20

5. Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti S, Chada A, Ravilla R. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Front Endocrinol (Lausanne). 2017;8:6. Doi: 10.3389/fendo.2017.00006

6. Hermansen K, Mortensen LS, Hermansen ML. Combining insulins with oral antidiabetic agents: effect on hyperglycemic control, markers of cardiovascular risk and disease. Vasc Health Risk Manag. 2008;4(3):561-574. Doi: 10.2147/vhrm.s1815

7. Nethathe B, Ramphinwa LM, Selekane Motadi A, Matlakala FK. Scoping review of ethnobotanical studies on Piliostigma thonningii (Schumach.) Milne-Redh. in Sub-Saharan Africa. Front Pharmacol. 2025; 16:1575548. Doi: 10.3389/fphar.2025.1575548

8. Abubakar IB, Malami I, Muhammad A, Salihu Shinkafi T, Shehu D, Maduabuchi Aja P. A review of the medicinal uses and biological activity of Piliostigma thonningii (Schum). Milne-Redh. RPSPPR 2024;3(1). Doi: 10.1093/rpsppr/rqae004

9. Teoh ES. Secondary Metabolites of Plants. Medicinal Orchids of Asia. 2015:57-73.

10. Pathak G. Chapter 14 - Biological production and application of secondary metabolites and other medicinal products. In: Singh DB, Upadhyay SK, editors. Medicinal Biotechnology: Academic Press; 2025. p. 273-325. Doi: 10.1016/B978-0-443-22264-1.00014-1

11. Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis GA, Vogiatzi G, Papaioannou S. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur Cardiol. 2019;14(1):50-59. Doi: 10.15420/ecr.2018.33.1

12. Nedosugova LV, Markina YV, Bochkareva LA, Kuzina IA, Petunina NA, Yudina IY. Inflammatory Mechanisms of Diabetes and Its Vascular Complications. Biomedicines. 2022;10(5). Doi: 10.3390/biomedicines10051168

13. Prpa EJ, Bajka BH, Ellis PR, Butterworth PJ, Corpe CP, Hall WL. A systematic review of in vitro studies evaluating the inhibitory effects of polyphenol-rich fruit extracts on carbohydrate digestive enzymes activity: a focus on culinary fruits consumed in Europe. Crit Rev Food Sci Nutr. 2021;61(22):3783-3803. Doi: 10.1080/10408398.2020.1808585

14. Adisakwattana S, Ruengsamran T, Kampa P, Sompong W. In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase. BMC Complement Altern Med. 2012;12(1):110. Doi: 10.1186/1472-6882-12-110

15. Telagari M, Hullatti K. In-vitro α-amylase and α-glucosidase inhibitory activity of Adiantum caudatum Linn. and Celosia argentea Linn. extracts and fractions. Indian J Pharmacol. 2015;47(4):425-429. Doi: 10.4103/0253-7613.161270

16. Patil A, Dwivedi PSR, Gaonkar SN, Kumbhar V, Shankar Madiwalar V, Khanal P. GLUT-2 mediated glucose uptake analysis of Duranta repens: In-silico and In-vitro approach. J Diabetes Metab Disord. 2022;21(1):419-427. Doi: 10.1007/s40200-022-00988-3

17. Ahmed F, Sairam S, Urooj A. In vitro hypoglycemic effects of selected dietary fiber sources. J Food Sci Technol. 2011;48(3):285-289. Doi: 10.1007/s13197-010-0153-7

18. Tanford C. Protein Denaturation. In: Anfinsen CB, Anson ML, Edsall JT, Richards FM, editors. Advances in Protein Chemistry. 23: Academic Press; 1968. p. 121-282. Doi: 10.1016/S0065-3233(08)60401-5

19. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. JACC. 2020;76(25):2982-3021. Doi: 10.1016/j.jacc.2020.11.010

20. Yesmin S, Paul A, Naz T, Rahman ABMA, Akhter SF, Wahed MII. Membrane stabilization as a mechanism of the anti-inflammatory activity of ethanolic root extract of Choi (Piper chaba). Clin Phytoscience. 2020;6(1):59. Doi: 10.1186/s40816-020-00207-7

21. Ameena A, Meignana AA, Karthikeyan R, Rajeshkumar S. Evaluation of the Anti-inflammatory, Antimicrobial, Antioxidant, and Cytotoxic Effects of Chitosan Thiocolchicoside-Lauric Acid Nanogel. Cureus. 2023;15(9):e46003. Doi: 10.7759/cureus.46003

22. Anosike CA, Obidoa O, Ezeanyika LU. Membrane stabilization as a mechanism of the anti-inflammatory activity of methanol extract of garden egg (Solanum aethiopicum). Daru. 2012;20(1):76. Doi: 10.1186/2008-2231-20-76

23. Koo I, Kim S, Zhang X. Comparative analysis of mass spectral matching-based compound identification in gas chromatography-mass spectrometry. J Chromatogr A. 2013;1298:132-138. Doi: 10.1016/j.chroma.2013.05.021

24. Gonfa YH, Tessema FB, Bachheti A, Rai N, Tadesse MG, Nasser Singab A. Anti-inflammatory activity of phytochemicals from medicinal plants and their nanoparticles: A review. Curr Res Biotechnol. 2023;6:100152. Doi: 10.1016/j.crbiot.2023.100152

25. Kumar A, P N, Kumar M, Jose A, Tomer V, Oz E. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules. 2023;28(2). Doi: 10.3390/molecules28020887

26. Kim S. Exploring Chemical Information in PubChem. Curr Protoc. 2021;1(8):e217.

27. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A. PubChem Substance and Compound databases. Nucleic Acids Res. 2016;44(D1):D1202-D1213. Doi: 10.1093/nar/gkv951

28. Lindert S, Durrant JD, McCammon JA. LigMerge: a fast algorithm to generate models of novel potential ligands from sets of known binders. Chem Biol Drug Des. 2012;80(3):358-865. Doi: 10.1111/j.1747-0285.2012.01414.x

29. Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M. Epik: a software program for pKaprediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des. 2007;21(12):681-691. Doi: 10.1007/s10822-007-9133-z

30. Eema M, Avupati VR. In silico binding role of flavonoids as SARS-CoV-2 main protease (Mpro) inhibitors: A dataset of molecular docking simulation-based high-throughput virtual screening (HTVS). Data in Brief. 2025;59:111308. Doi: 10.1016/j.dib.2025.111308

31. Shamsian S, Sokouti B, Dastmalchi S. Benchmarking different docking protocols for predicting the binding poses of ligands complexed with cyclooxygenase enzymes and screening chemical libraries. Bioimpacts. 2024;14(2):29955. Doi: 10.34172/bi.2023.29955

32. Rifai EA, van Dijk M, Vermeulen NPE, Yanuar A, Geerke DP. A Comparative Linear Interaction Energy and MM/PBSA Study on SIRT1-Ligand Binding Free Energy Calculation. J Chem Inf Model. 2019;59(9):4018-4033. Doi: 10.1021/acs.jcim.9b00609

33. Dong L, Qu X, Zhao Y, Wang B. Prediction of Binding Free Energy of Protein-Ligand Complexes with a Hybrid Molecular Mechanics/Generalized Born Surface Area and Machine Learning Method. ACS Omega. 2021;6(48):32938-32947. Doi: 10.1021/acsomega.1c04996

34. Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10(5):449-461. Doi: 10.1517/17460441.2015.1032936

35. Golovinskaia O, Wang C-K. The hypoglycemic potential of phenolics from functional foods and their mechanisms. Food Sci Hum Wellness. 2023;12(4):986-1007. Doi: 10.1016/j.fshw.2022.10.020

36. Zhou P, Li T, Zhao J, Al-Ansi W, Fan M, Qian H. Grain bound polyphenols: Molecular interactions, release characteristics, and regulation mechanisms of postprandial hyperglycemia. Food Res Int. 2025;208:116291. Doi: 10.1016/j.foodres.2025.116291

37. Gong L, Feng D, Wang T, Ren Y, Liu Y, Wang J. Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci Nutr. 2020;8(12):6320-6337. Doi: 10.1002/fsn3.1987

38. Wibowo S, Wardhani SK, Hidayati L, Wijayanti N, Matsuo K, Costa J. Investigation of α-glucosidase and α-amylase inhibition for antidiabetic potential of agarwood (Aquilaria malaccensis) leaves extract. Biocatal Agric Biotechnol. 2024;58:103152. Doi: 10.1016/j.bcab.2024.103152

39. Yilmazer-Musa M, Griffith AM, Michels AJ, Schneider E, Frei B. Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of α-amylase and α-glucosidase activity. J Agric Food Chem. 2012;60(36):8924-8929. Doi: 10.1021/jf301147n

40. Ferenczy GG, Kellermayer M. Contribution of hydrophobic interactions to protein mechanical stability. Comput Struct Biotechnol J. 2022;20:1946-1956. Doi: 10.1016/j.csbj.2022.04.025

41. Patil R, Das S, Stanley A, Yadav L, Sudhakar A, Varma AK. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS One. 2010;5(8):e12029. Doi: 10.1371/journal.pone.0012029

42. Chi T, Wang M, Wang X, Yang K, Xie F, Liao Z. PPAR-γ Modulators as Current and Potential Cancer Treatments. Front Oncol. 2021;Volume 11 - 2021. Doi: 10.3389/fonc.2021.737776

43. Zhu Z, Guan Y, Gao S, Guo F, Liu D, Zhang H. Impact of natural compounds on peroxisome proliferator-activated receptor: Molecular effects and its importance as a novel therapeutic target for neurological disorders. European J Med Chem. 2025;283:117170. Doi: 10.1016/j.ejmech.2024.117170

44. Chaiya P, Senarat S, Phaechamud T, Narakornwit W. In vitro anti-inflammatory activity using thermally inhibiting protein denaturation of egg albumin and antimicrobial activities of some organic solvents. Mater Today: Proc. 2022;65:2290-2295. Doi: 10.1016/j.matpr.2022.04.916

45. Prasathkumar M, Raja K, Vasanth K, Khusro A, Sadhasivam S, Sahibzada MUK. Phytochemical screening and in vitro antibacterial, antioxidant, anti-inflammatory, anti-diabetic, and wound healing attributes of Senna auriculata (L.) Roxb. leaves. Arab J Chem. 2021;14(9):103345. Doi: 10.1016/j.arabjc.2021.103345

46. Cui J, Jia J. Natural COX-2 Inhibitors as Promising Anti-inflammatory Agents: An Update. Curr Med Chem. 2021;28(18):3622-3646. Doi: 10.2174/0929867327999200917150939

47. Ju Z, Li M, Xu J, Howell DC, Li Z, Chen FE. Recent development on COX-2 inhibitors as promising anti-inflammatory agents: The past 10 years. Acta Pharm Sin B. 2022;12(6):2790-2807. Doi: 10.1016/j.apsb.2022.01.002

48. Desai SJ, Prickril B, Rasooly A. Mechanisms of Phytonutrient Modulation of Cyclooxygenase-2 (COX-2) and Inflammation Related to Cancer. Nutr Cancer. 2018;70(3):350-375. Doi: 10.1080/01635581.2018.1446091

49. Chen W, Zhong Y, Feng N, Guo Z, Wang S, Xing D. New horizons in the roles and associations of COX-2 and novel natural inhibitors in cardiovascular diseases. Mol Med. 2021;27(1):123. Doi: 10.1186/s10020-021-00358-4

50. Ansari P, Reberio AD, Ansari NJ, Kumar S, Khan JT, Chowdhury S. Therapeutic Potential of Medicinal Plants and Their Phytoconstituents in Diabetes, Cancer, Infections, Cardiovascular Diseases, Inflammation and Gastrointestinal Disorders. Biomedicines. 2025;13(2). Doi: 10.3390/biomedicines13020454

51. Kavya P, Theijeswini RC, Gayathri M. Phytochemical analysis, identification of bioactive compounds using GC-MS, in vitro and in silico hypoglycemic potential, in vitro antioxidant potential, and in silico ADME analysis of Chlorophytum comosum root and leaf. Front Chem. 2024;12:1458505. Doi: 10.3389/fchem.2024.1458505

52. Mahgoub S, Al-Awadi S, Abdelfatah H, Alshehry G, Alhassani WE, Alqurashi AF. GC–MS and HPLC analysis of bioactive compounds in Globe artichoke extract to enhance antioxidant and antibacterial properties in low-salt Domiati cheese. Appl Food Res. 2025;5(1):100800. Doi: 10.1016/j.afres.2025.100800

Downloads

Published

2025-06-09

How to Cite

Alabi, M. A., Yakub, N. T., Abiola, M. M., & Ajani, E. O. (2025). Unveiling the Antidiabetic and Anti-Inflammatory Potential of Piliostigma thonningii Ethanol Leaf Extract as a Dual PPAR-γ and COX-2 Modulator via In Vitro and Molecular Docking Insights. Tropical Journal of Drug Research, 2(5), 130-145. https://doi.org/10.26538/tjdr/v2i5.2

Similar Articles

You may also start an advanced similarity search for this article.